Prevalence, Contents and Automatic Detection of KL-SATD

08/12/2020 ∙ by Leevi Rantala, et al. ∙ 0

When developers use different keywords such as TODO and FIXME in source code comments to describe self-admitted technical debt (SATD), we refer it as Keyword-Labeled SATD (KL-SATD). We study KL-SATD from 33 software repositories with 13,588 KL-SATD comments. We find that the median percentage of KL-SATD comments among all comments is only 1,52 contents include words expressing code changes and uncertainty, such as remove, fix, maybe and probably. This makes them different compared to other comments. KL-SATD comment contents are similar to manually labeled SATD comments of prior work. Our machine learning classifier using logistic Lasso regression has good performance in detecting KL-SATD comments (AUC-ROC 0.88). Finally, we demonstrate that using machine learning we can identify comments that are currently missing but which should have a SATD keyword in them. Automating SATD identification of comments that lack SATD keywords can save time and effort by replacing manual identification of comments. Using KL-SATD offers a potential to bootstrap a complete SATD detector.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.