Pretrained Transformers as Universal Computation Engines

03/09/2021 ∙ by Kevin Lu, et al. ∙ 0

We investigate the capability of a transformer pretrained on natural language to generalize to other modalities with minimal finetuning – in particular, without finetuning of the self-attention and feedforward layers of the residual blocks. We consider such a model, which we call a Frozen Pretrained Transformer (FPT), and study finetuning it on a variety of sequence classification tasks spanning numerical computation, vision, and protein fold prediction. In contrast to prior works which investigate finetuning on the same modality as the pretraining dataset, we show that pretraining on natural language improves performance and compute efficiency on non-language downstream tasks. In particular, we find that such pretraining enables FPT to generalize in zero-shot to these modalities, matching the performance of a transformer fully trained on these tasks.



There are no comments yet.


page 1

page 7

Code Repositories


Official codebase for Pretrained Transformers as Universal Computation Engines.

view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.