Pretending Fair Decisions via Stealthily Biased Sampling

01/24/2019
by   Kazuto Fukuchi, et al.
0

Fairness by decision-makers is believed to be auditable by third parties. In this study, we show that this is not always true. We consider the following scenario. Imagine a decision-maker who discloses a subset of his dataset with decisions to make his decisions auditable. If he is corrupt, and he deliberately selects a subset that looks fair even though the overall decision is unfair, can we identify this decision-maker's fraud? We answer this question negatively. We first propose a sampling method that produces a subset whose distribution is biased from the original (to pretend to be fair); however, its differentiation from uniform sampling is difficult. We call such a sampling method as stealthily biased sampling, which is formulated as a Wasserstein distance minimization problem, and is solved through a minimum-cost flow computation. We proved that the stealthily biased sampling minimizes an upper-bound of the indistinguishability. We conducted experiments to see that the stealthily biased sampling is, in fact, difficult to detect.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset