Preparing Weather Data for Real-Time Building Energy Simulation

11/19/2020
by   Maryam MeshkinKiya, et al.
0

This study introduces a framework for quality control of measured weather data, including anomaly detection, and infilling missing values. Weather data is a fundamental input to building performance simulations, in which anomalous values defect the results while missing data lead to an unexpected termination of the simulation process. Traditionally, infilling missing values in weather data is performed through periodic or linear interpolations. However, when missing values exceed many consecutive hours, the accuracy of traditional methods is subject to debate. This study demonstrates how Neural Networks can increase the accuracy of data imputation when compared to other supervised learning methods. The framework is validated by predicting missing temperature and relative humidity data for an observation site, through a network of nearby weather stations in Milan, Italy. Results show that the proposed method can facilitate real-time building simulations with accurate and rapid quality control.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro