Predictions of Reynolds and Nusselt numbers in turbulent convection using machine-learning models
In this paper, we develop a multivariate regression model and a neural network model to predict the Reynolds number (Re) and Nusselt number in turbulent thermal convection. We compare their predictions with those of earlier models of convection: Grossmann-Lohse [Phys. Rev. Lett. 86, 3316 (2001)], revised Grossmann-Lohse [Phys. Fluids 33, 015113 (2021)], and Pandey-Verma [Phys. Rev. E 94, 053106 (2016)] models. We observe that although the predictions of all the models are quite close to each other, the machine learning models developed in this work provide the best match with the experimental and numerical results.
READ FULL TEXT