Predictions For Pre-training Language Models

11/18/2020 ∙ by Tong Guo, et al. ∙ 0

Language model pre-training has proven to be useful in many language understanding tasks. In this paper, we investigate whether it is still helpful to add the specific task's loss in pre-training step. In industry NLP applications, we have large amount of data produced by users. We use the fine-tuned model to give the user-generated unlabeled data a pseudo-label. Then we use the pseudo-label for the task-specific loss and masked language model loss to pre-train. The experiment shows that using the fine-tuned model's predictions for pseudo-labeled pre-training offers further gains in the downstream task. The improvement of our method is stable and remarkable.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.