Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions

11/19/2018
by   Shira Mitchell, et al.
0

A recent flurry of research activity has attempted to quantitatively define "fairness" for decisions based on statistical and machine learning (ML) predictions. The rapid growth of this new field has led to wildly inconsistent terminology and notation, presenting a serious challenge for cataloguing and comparing definitions. This paper attempts to bring much-needed order. First, we explicate the various choices and assumptions made---often implicitly---to justify the use of prediction-based decisions. Next, we show how such choices and assumptions can raise concerns about fairness and we present a notationally consistent catalogue of fairness definitions from the ML literature. In doing so, we offer a concise reference for thinking through the choices, assumptions, and fairness considerations of prediction-based decision systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset