Predicting within and across language phoneme recognition performance of self-supervised learning speech pre-trained models

06/24/2022
by   Hang Ji, et al.
0

In this work, we analyzed and compared speech representations extracted from different frozen self-supervised learning (SSL) speech pre-trained models on their ability to capture articulatory features (AF) information and their subsequent prediction of phone recognition performance for within and across language scenarios. Specifically, we compared CPC, wav2vec 2.0, and HuBert. First, frame-level AF probing tasks were implemented. Subsequently, phone-level end-to-end ASR systems for phoneme recognition tasks were implemented, and the performance on the frame-level AF probing task and the phone accuracy were correlated. Compared to the conventional speech representation MFCC, all SSL pre-trained speech representations captured more AF information, and achieved better phoneme recognition performance within and across languages, with HuBert performing best. The frame-level AF probing task is a good predictor of phoneme recognition performance, showing the importance of capturing AF information in the speech representations. Compared with MFCC, in the within-language scenario, the performance of these SSL speech pre-trained models on AF probing tasks achieved a maximum relative increase of 34.4 lowest PER of 10.2 increase of 26.7

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset