Predicting Short-Term Uber Demand Using Spatio-Temporal Modeling: A New York City Case Study
The demand for e-hailing services is growing rapidly, especially in large cities. Uber is the first and popular e-hailing company in the United Stated and New York City. A comparison of the demand for yellow-cabs and Uber in NYC in 2014 and 2015 shows that the demand for Uber has increased. However, this demand may not be distributed uniformly either spatially or temporally. Using spatio-temporal time series models can help us to better understand the demand for e-hailing services and to predict it more accurately. This paper analyzes the prediction performance of one temporal model (vector autoregressive (VAR)) and two spatio-temporal models (Spatial-temporal autoregressive (STAR); least absolute shrinkage and selection operator applied on STAR (LASSO-STAR)) and for different scenarios (based on the number of time and space lags), and applied to both rush hours and non-rush hours periods. The results show the need of considering spatial models for taxi demand.
READ FULL TEXT