Predicting pathways for old and new metabolites through clustering
The diverse metabolic pathways are fundamental to all living organisms, as they harvest energy, synthesize biomass components, produce molecules to interact with the microenvironment, and neutralize toxins. While discovery of new metabolites and pathways continues, the prediction of pathways for new metabolites can be challenging. It can take vast amounts of time to elucidate pathways for new metabolites; thus, according to HMDB only 60 get assigned to pathways. Here, we present an approach to identify pathways based on metabolite structure. We extracted 201 features from SMILES annotations, and identified new metabolites from PubMed abstracts and HMDB. After applying clustering algorithms to both groups of features, we quantified correlations between metabolites, and found the clusters accurately linked 92 of known metabolites to their respective pathways. Thus, this approach could be valuable for predicting metabolic pathways for new metabolites.
READ FULL TEXT