Predicting Impact-Induced Joint Velocity Jumps on Kinematic-Controlled Manipulator

02/25/2022
by   Yuquan Wang, et al.
0

In order to enable on-purpose robotic impact tasks, predicting joint-velocity jumps is essential to enforce controller feasibility and hardware integrity. We observe a considerable prediction error of a commonly-used approach in robotics compared against 250 benchmark experiments with the Panda manipulator. We reduce the average prediction error by 81.98 task-space equations without inverting the ill-conditioned joint-space inertia matrix. Second, before the impact event, we compute the equivalent inertial properties of the end-effector tip considering that a high-gains (stiff) kinematic-controlled manipulator behaves like a composite-rigid body.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset