Predicting Hurricane Trajectories using a Recurrent Neural Network
Hurricanes are cyclones circulating about a defined center whose closed wind speeds exceed 75 mph originating over tropical and subtropical waters. At landfall, hurricanes can result in severe disasters. The accuracy of predicting their trajectory paths is critical to reduce economic loss and save human lives. Given the complexity and nonlinearity of weather data, a recurrent neural network (RNN) could be beneficial in modeling hurricane behavior. We propose the application of a fully connected RNN to predict the trajectory of hurricanes. We employed the RNN over a fine grid to reduce typical truncation errors. We utilized their latitude, longitude, wind speed, and pressure publicly provided by the National Hurricane Center (NOAA) to predict the trajectory of a hurricane at 6-hour intervals.
READ FULL TEXT