Predicting COVID-19 Patient Shielding: A Comprehensive Study

by   Vithya Yogarajan, et al.
University of Waikato

There are many ways machine learning and big data analytics are used in the fight against the COVID-19 pandemic, including predictions, risk management, diagnostics, and prevention. This study focuses on predicting COVID-19 patient shielding – identifying and protecting patients who are clinically extremely vulnerable from coronavirus. This study focuses on techniques used for the multi-label classification of medical text. Using the information published by the United Kingdom NHS and the World Health Organisation, we present a novel approach to predicting COVID-19 patient shielding as a multi-label classification problem. We use publicly available, de-identified ICU medical text data for our experiments. The labels are derived from the published COVID-19 patient shielding data. We present an extensive comparison across 12 multi-label classifiers from the simple binary relevance to neural networks and the most recent transformers. To the best of our knowledge this is the first comprehensive study, where such a range of multi-label classifiers for medical text are considered. We highlight the benefits of various approaches, and argue that, for the task at hand, both predictive accuracy and processing time are essential.


page 1

page 2

page 3

page 4


Multi-Label Learning from Medical Plain Text with Convolutional Residual Models

Predicting diagnoses from Electronic Health Records (EHRs) is an importa...

Improving Predictions of Tail-end Labels using Concatenated BioMed-Transformers for Long Medical Documents

Multi-label learning predicts a subset of labels from a given label set ...

Predicting COVID-19 and pneumonia complications from admission texts

In this paper we present a novel approach to risk assessment for patient...

Semi-Supervised Active Learning for COVID-19 Lung Ultrasound Multi-symptom Classification

Ultrasound (US) is a non-invasive yet effective medical diagnostic imagi...

Auto Response Generation in Online Medical Chat Services

Telehealth helps to facilitate access to medical professionals by enabli...

Please sign up or login with your details

Forgot password? Click here to reset