Predicting Clinical Events by Combining Static and Dynamic Information Using Recurrent Neural Networks

by   Cristóbal Esteban, et al.

In clinical data sets we often find static information (e.g. patient gender, blood type, etc.) combined with sequences of data that are recorded during multiple hospital visits (e.g. medications prescribed, tests performed, etc.). Recurrent Neural Networks (RNNs) have proven to be very successful for modelling sequences of data in many areas of Machine Learning. In this work we present an approach based on RNNs, specifically designed for the clinical domain, that combines static and dynamic information in order to predict future events. We work with a database collected in the Charité Hospital in Berlin that contains complete information concerning patients that underwent a kidney transplantation. After the transplantation three main endpoints can occur: rejection of the kidney, loss of the kidney and death of the patient. Our goal is to predict, based on information recorded in the Electronic Health Record of each patient, whether any of those endpoints will occur within the next six or twelve months after each visit to the clinic. We compared different types of RNNs that we developed for this work, with a model based on a Feedforward Neural Network and a Logistic Regression model. We found that the RNN that we developed based on Gated Recurrent Units provides the best performance for this task. We also used the same models for a second task, i.e., next event prediction, and found that here the model based on a Feedforward Neural Network outperformed the other models. Our hypothesis is that long-term dependencies are not as relevant in this task.



There are no comments yet.


page 1

page 2

page 3

page 4


Learning to Adapt Clinical Sequences with Residual Mixture of Experts

Clinical event sequences in Electronic Health Records (EHRs) record deta...

Tiresias: Predicting Security Events Through Deep Learning

With the increased complexity of modern computer attacks, there is a nee...

Temporal Cascade and Structural Modelling of EHRs for Granular Readmission Prediction

Predicting (1) when the next hospital admission occurs and (2) what will...

Improving Prediction of Low-Prior Clinical Events with Simultaneous General Patient-State Representation Learning

Low-prior targets are common among many important clinical events, which...

Automatic detection of alarm sounds in a noisy hospital environment using model and non-model based approaches

In the noisy acoustic environment of a Neonatal Intensive Care Unit (NIC...

How do Mixture Density RNNs Predict the Future?

Gaining a better understanding of how and what machine learning systems ...

Relaxed Weight Sharing: Effectively Modeling Time-Varying Relationships in Clinical Time-Series

Recurrent neural networks (RNNs) are commonly applied to clinical time-s...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.