Predicting Audience's Laughter Using Convolutional Neural Network

02/08/2017
by   Lei Chen, et al.
0

For the purpose of automatically evaluating speakers' humor usage, we build a presentation corpus containing humorous utterances based on TED talks. Compared to previous data resources supporting humor recognition research, ours has several advantages, including (a) both positive and negative instances coming from a homogeneous data set, (b) containing a large number of speakers, and (c) being open. Focusing on using lexical cues for humor recognition, we systematically compare a newly emerging text classification method based on Convolutional Neural Networks (CNNs) with a well-established conventional method using linguistic knowledge. The advantages of the CNN method are both getting higher detection accuracies and being able to learn essential features automatically.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro