Predicting 4D Liver MRI for MR-guided Interventions

02/25/2022
by   Gino Gulamhussene, et al.
0

Organ motion poses an unresolved challenge in image-guided interventions. In the pursuit of solving this problem, the research field of time-resolved volumetric magnetic resonance imaging (4D MRI) has evolved. However, current techniques are unsuitable for most interventional settings because they lack sufficient temporal and/or spatial resolution or have long acquisition times. In this work, we propose a novel approach for real-time, high-resolution 4D MRI with large fields of view for MR-guided interventions. To this end, we trained a convolutional neural network (CNN) end-to-end to predict a 3D liver MRI that correctly predicts the liver's respiratory state from a live 2D navigator MRI of a subject. Our method can be used in two ways: First, it can reconstruct near real-time 4D MRI with high quality and high resolution (209x128x128 matrix size with isotropic 1.8mm voxel size and 0.6s/volume) given a dynamic interventional 2D navigator slice for guidance during an intervention. Second, it can be used for retrospective 4D reconstruction with a temporal resolution of below 0.2s/volume for motion analysis and use in radiation therapy. We report a mean target registration error (TRE) of 1.19 ±0.74mm, which is below voxel size. We compare our results with a state-of-the-art retrospective 4D MRI reconstruction. Visual evaluation shows comparable quality. We show that small training sizes with short acquisition times down to 2min can already achieve promising results and 24min are sufficient for high quality results. Because our method can be readily combined with earlier methods, acquisition time can be further decreased while also limiting quality loss. We show that an end-to-end, deep learning formulation is highly promising for 4D MRI reconstruction.

READ FULL TEXT

page 8

page 10

page 11

page 13

research
02/15/2018

Learning from a Handful Volumes: MRI Resolution Enhancement with Volumetric Super-Resolution Forests

Magnetic resonance imaging (MRI) enables 3-D imaging of anatomical struc...
research
10/04/2019

4D MRI: Robust sorting of free breathing MRI slices for use in interventional settings

Purpose: We aim to develop a robust 4D MRI method for large FOVs enablin...
research
08/19/2021

Can a Tesla Turbine be Utilised as a Non-Magnetic Actuator for MRI-Guided Robotic Interventions?

This paper introduces a new type of nonmagnetic actuator for MRI interve...
research
08/28/2019

SMART tracking: Simultaneous anatomical imaging and real-time passive device tracking for MR-guided interventions

Purpose: This study demonstrates a proof of concept of a method for simu...
research
06/03/2018

k-Space Deep Learning for Parallel MRI: Application to Time-Resolved MR Angiography

Time-resolved angiography with interleaved stochastic trajectories (TWIS...
research
04/15/2020

Real-time sparse-sampled Ptychographic imaging through deep neural networks

Ptychography has rapidly grown in the fields of X-ray and electron imagi...
research
11/21/2020

MRI-Guided High Intensity Focused Ultrasound of Liver and Kidney

High Intensity Focused Ultrasound (HIFU) can be used to achieve a local ...

Please sign up or login with your details

Forgot password? Click here to reset