Pre-training also Transfers Non-Robustness

06/21/2021
by   Jiaming Zhang, et al.
0

Pre-training has enabled many state-of-the-art results on many tasks. In spite of its recognized contribution to generalization, we observed in this study that pre-training also transfers the non-robustness from pre-trained model into the fine-tuned model. Using image classification as an example, we first conducted experiments on various datasets and network backbones to explore the factors influencing robustness. Further analysis is conducted on examining the difference between the fine-tuned model and standard model to uncover the reason leading to the non-robustness transfer. Finally, we introduce a simple robust pre-training solution by regularizing the difference between target and source tasks. Results validate the effectiveness in alleviating non-robustness and preserving generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset