Practical Kernel-Based Reinforcement Learning

07/21/2014
by   André M. S. Barreto, et al.
0

Kernel-based reinforcement learning (KBRL) stands out among reinforcement learning algorithms for its strong theoretical guarantees. By casting the learning problem as a local kernel approximation, KBRL provides a way of computing a decision policy which is statistically consistent and converges to a unique solution. Unfortunately, the model constructed by KBRL grows with the number of sample transitions, resulting in a computational cost that precludes its application to large-scale or on-line domains. In this paper we introduce an algorithm that turns KBRL into a practical reinforcement learning tool. Kernel-based stochastic factorization (KBSF) builds on a simple idea: when a transition matrix is represented as the product of two stochastic matrices, one can swap the factors of the multiplication to obtain another transition matrix, potentially much smaller, which retains some fundamental properties of its precursor. KBSF exploits such an insight to compress the information contained in KBRL's model into an approximator of fixed size. This makes it possible to build an approximation that takes into account both the difficulty of the problem and the associated computational cost. KBSF's computational complexity is linear in the number of sample transitions, which is the best one can do without discarding data. Moreover, the algorithm's simple mechanics allow for a fully incremental implementation that makes the amount of memory used independent of the number of sample transitions. The result is a kernel-based reinforcement learning algorithm that can be applied to large-scale problems in both off-line and on-line regimes. We derive upper bounds for the distance between the value functions computed by KBRL and KBSF using the same data. We also illustrate the potential of our algorithm in an extensive empirical study in which KBSF is applied to difficult tasks based on real-world data.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
04/29/2023

Semi-Infinitely Constrained Markov Decision Processes and Efficient Reinforcement Learning

We propose a novel generalization of constrained Markov decision process...
research
02/01/2023

Sample Complexity of Kernel-Based Q-Learning

Modern reinforcement learning (RL) often faces an enormous state-action ...
research
07/15/2020

Qgraph-bounded Q-learning: Stabilizing Model-Free Off-Policy Deep Reinforcement Learning

In state of the art model-free off-policy deep reinforcement learning, a...
research
04/14/2020

A Demonstration of Issues with Value-Based Multiobjective Reinforcement Learning Under Stochastic State Transitions

We report a previously unidentified issue with model-free, value-based a...
research
04/15/2021

An L^2 Analysis of Reinforcement Learning in High Dimensions with Kernel and Neural Network Approximation

Reinforcement learning (RL) algorithms based on high-dimensional functio...
research
10/13/2020

Average Cost Optimal Control of Stochastic Systems Using Reinforcement Learning

This paper addresses the average cost minimization problem for discrete-...
research
07/02/2019

Sample Adaptive Multiple Kernel Learning for Failure Prediction of Railway Points

Railway points are among the key components of railway infrastructure. A...

Please sign up or login with your details

Forgot password? Click here to reset