PowerEvaluationBALD: Efficient Evaluation-Oriented Deep (Bayesian) Active Learning with Stochastic Acquisition Functions

01/10/2021
by   Andreas Kirsch, et al.
8

We develop BatchEvaluationBALD, a new acquisition function for deep Bayesian active learning, as an expansion of BatchBALD that takes into account an evaluation set of unlabeled data, for example, the pool set. We also develop a variant for the non-Bayesian setting, which we call Evaluation Information Gain. To reduce computational requirements and allow these methods to scale to larger acquisition batch sizes, we introduce stochastic acquisition functions that use importance-sampling of tempered acquisition scores. We call this method PowerEvaluationBALD. We show in first experiments that PowerEvaluationBALD works on par with BatchEvaluationBALD, which outperforms BatchBALD on Repeated MNIST (MNISTx2), while massively reducing the computational requirements compared to BatchBALD or BatchEvaluationBALD.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset