Power Consumption Variation over Activation Functions

06/12/2020
by   Leon Derczynski, et al.
16

The power that machine learning models consume when making predictions can be affected by a model's architecture. This paper presents various estimates of power consumption for a range of different activation functions, a core factor in neural network model architecture design. Substantial differences in hardware performance exist between activation functions. This difference informs how power consumption in machine learning models can be reduced.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset