Potential Field-based Path Planning with Interactive Speed Optimization for Autonomous Vehicles

06/12/2023
by   Pengfei Lin, et al.
0

Path planning is critical for autonomous vehicles (AVs) to determine the optimal route while considering constraints and objectives. The potential field (PF) approach has become prevalent in path planning due to its simple structure and computational efficiency. However, current PF methods used in AVs focus solely on the path generation of the ego vehicle while assuming that the surrounding obstacle vehicles drive at a preset behavior without the PF-based path planner, which ignores the fact that the ego vehicle's PF could also impact the path generation of the obstacle vehicles. To tackle this problem, we propose a PF-based path planning approach where local paths are shared among ego and obstacle vehicles via vehicle-to-vehicle (V2V) communication. Then by integrating this shared local path into an objective function, a new optimization function called interactive speed optimization (ISO) is designed to allow driving safety and comfort for both ego and obstacle vehicles. The proposed method is evaluated using MATLAB/Simulink in the urgent merging scenarios by comparing it with conventional methods. The simulation results indicate that the proposed method can mitigate the impact of other AVs' PFs by slowing down in advance, effectively reducing the oscillations for both ego and obstacle AVs.

READ FULL TEXT

page 1

page 2

page 3

page 5

research
12/03/2021

Optimal Vehicle Path Planning Using Quadratic Optimization for Baidu Apollo Open Platform

Path planning is a key component in motion planning for autonomous vehic...
research
08/19/2023

Clothoid Curve-based Emergency-Stopping Path Planning with Adaptive Potential Field for Autonomous Vehicles

The Potential Field (PF)-based path planning method is widely adopted fo...
research
05/25/2021

A Closed-Loop Linear Covariance Framework for Vehicle Path Planning in an Uncertain Obstacle Field

Path planning in uncertain environments is a key enabler of true vehicle...
research
08/29/2020

Path Planning Followed by Kinodynamic Smoothing for Multirotor Aerial Vehicles (MAVs)

We explore path planning followed by kinodynamic smoothing while ensurin...
research
05/10/2021

Safety of the Intended Driving Behavior Using Rulebooks

Autonomous Vehicles (AVs) are complex systems that drive in uncertain en...
research
06/12/2023

Occlusion-Aware Path Planning for Collision Avoidance: Leveraging Potential Field Method with Responsibility-Sensitive Safety

Collision avoidance (CA) has always been the foremost task for autonomou...

Please sign up or login with your details

Forgot password? Click here to reset