Posterior Differential Regularization with f-divergence for Improving Model Robustness

10/23/2020 ∙ by Hao Cheng, et al. ∙ 0

We address the problem of enhancing model robustness through regularization. Specifically, we focus on methods that regularize the model posterior difference between clean and noisy inputs. Theoretically, we provide a connection of two recent methods, Jacobian Regularization and Virtual Adversarial Training, under this framework. Additionally, we generalize the posterior differential regularization to the family of f-divergences and characterize the overall regularization framework in terms of Jacobian matrix. Empirically, we systematically compare those regularizations and standard BERT training on a diverse set of tasks to provide a comprehensive profile of their effect on model in-domain and out-of-domain generalization. For both fully supervised and semi-supervised settings, our experiments show that regularizing the posterior differential with f-divergence can result in well-improved model robustness. In particular, with a proper f-divergence, a BERT-base model can achieve comparable generalization as its BERT-large counterpart for in-domain, adversarial and domain shift scenarios, indicating the great potential of the proposed framework for boosting model generalization for NLP models.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.