Possibilistic decreasing persistence

03/06/2013 ∙ by Dimiter Driankov, et al. ∙ 0

A key issue in the handling of temporal data is the treatment of persistence; in most approaches it consists in inferring defeasible confusions by extrapolating from the actual knowledge of the history of the world; we propose here a gradual modelling of persistence, following the idea that persistence is decreasing (the further we are from the last time point where a fluent is known to be true, the less certainly true the fluent is); it is based on possibility theory, which has strong relations with other well-known ordering-based approaches to nonmonotonic reasoning. We compare our approach with Dean and Kanazawa's probabilistic projection. We give a formal modelling of the decreasing persistence problem. Lastly, we show how to infer nonmonotonic conclusions using the principle of decreasing persistence.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.