Positive and Negative Explanations of Uncertain Reasoning in the Framework of Possibility Theory

03/27/2013 ∙ by Henri Farrency, et al. ∙ 0

This paper presents an approach for developing the explanation capabilities of rule-based expert systems managing imprecise and uncertain knowledge. The treatment of uncertainty takes place in the framework of possibility theory where the available information concerning the value of a logical or numerical variable is represented by a possibility distribution which restricts its more or less possible values. We first discuss different kinds of queries asking for explanations before focusing on the two following types : i) how, a particular possibility distribution is obtained (emphasizing the main reasons only) ; ii) why in a computed possibility distribution, a particular value has received a possibility degree which is so high, so low or so contrary to the expectation. The approach is based on the exploitation of equations in max-min algebra. This formalism includes the limit case of certain and precise information.



There are no comments yet.


page 1

page 2

page 3

page 4

page 5

page 6

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.