Position-prior Clustering-based Self-attention Module for Knee Cartilage Segmentation
The morphological changes in knee cartilage (especially femoral and tibial cartilages) are closely related to the progression of knee osteoarthritis, which is expressed by magnetic resonance (MR) images and assessed on the cartilage segmentation results. Thus, it is necessary to propose an effective automatic cartilage segmentation model for longitudinal research on osteoarthritis. In this research, to relieve the problem of inaccurate discontinuous segmentation caused by the limited receptive field in convolutional neural networks, we proposed a novel position-prior clustering-based self-attention module (PCAM). In PCAM, long-range dependency between each class center and feature point is captured by self-attention allowing contextual information re-allocated to strengthen the relative features and ensure the continuity of segmentation result. The clutsering-based method is used to estimate class centers, which fosters intra-class consistency and further improves the accuracy of segmentation results. The position-prior excludes the false positives from side-output and makes center estimation more precise. Sufficient experiments are conducted on OAI-ZIB dataset. The experimental results show that the segmentation performance of combination of segmentation network and PCAM obtains an evident improvement compared to original model, which proves the potential application of PCAM in medical segmentation tasks. The source code is publicly available from link: https://github.com/LeongDong/PCAMNet
READ FULL TEXT