Portable Programming Model Exploration for LArTPC Simulation in a Heterogeneous Computing Environment: OpenMP vs. SYCL

04/04/2023
by   Meifeng Lin, et al.
0

The evolution of the computing landscape has resulted in the proliferation of diverse hardware architectures, with different flavors of GPUs and other compute accelerators becoming more widely available. To facilitate the efficient use of these architectures in a heterogeneous computing environment, several programming models are available to enable portability and performance across different computing systems, such as Kokkos, SYCL, OpenMP and others. As part of the High Energy Physics Center for Computational Excellence (HEP-CCE) project, we investigate if and how these different programming models may be suitable for experimental HEP workflows through a few representative use cases. One of such use cases is the Liquid Argon Time Projection Chamber (LArTPC) simulation which is essential for LArTPC detector design, validation and data analysis. Following up on our previous investigations of using Kokkos to port LArTPC simulation in the Wire-Cell Toolkit (WCT) to GPUs, we have explored OpenMP and SYCL as potential portable programming models for WCT, with the goal to make diverse computing resources accessible to the LArTPC simulations. In this work, we describe how we utilize relevant features of OpenMP and SYCL for the LArTPC simulation module in WCT. We also show performance benchmark results on multi-core CPUs, NVIDIA and AMD GPUs for both the OpenMP and the SYCL implementations. Comparisons with different compilers will also be given where appropriate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset