Pool of Experts: Realtime Querying Specialized Knowledge in Massive Neural Networks

07/03/2021
by   Hakbin Kim, et al.
0

In spite of the great success of deep learning technologies, training and delivery of a practically serviceable model is still a highly time-consuming process. Furthermore, a resulting model is usually too generic and heavyweight, and hence essentially goes through another expensive model compression phase to fit in a resource-limited device like embedded systems. Inspired by the fact that a machine learning task specifically requested by mobile users is often much simpler than it is supported by a massive generic model, this paper proposes a framework, called Pool of Experts (PoE), that instantly builds a lightweight and task-specific model without any training process. For a realtime model querying service, PoE first extracts a pool of primitive components, called experts, from a well-trained and sufficiently generic network by exploiting a novel conditional knowledge distillation method, and then performs our train-free knowledge consolidation to quickly combine necessary experts into a lightweight network for a target task. Thanks to this train-free property, in our thorough empirical study, PoE can build a fairly accurate yet compact model in a realtime manner, whereas it takes a few minutes per query for the other training methods to achieve a similar level of the accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro