Polynomial Trajectory Predictions for Improved Learning Performance
The rising demand for Active Safety systems in automotive applications stresses the need for a reliable short to mid-term trajectory prediction. Anticipating the unfolding path of road users, one can act to increase the overall safety. In this work, we propose to train artificial neural networks for movement understanding by predicting trajectories in their natural form, as a function of time. Predicting polynomial coefficients allows us to increased accuracy and improve generalisation.
READ FULL TEXT