Polynomial-Time Preprocessing for Weighted Problems Beyond Additive Goal Functions

10/01/2019
by   Matthias Bentert, et al.
0

Kernelization is the fundamental notion for polynomial-time prepocessing with performance guarantees in parameterized algorithmics. When preprocessing weighted problems, the need of shrinking weights might arise. Marx and Végh [ACM Trans. Algorithms 2015] and Etscheid et al. [J. Comput. Syst. Sci. 2017] used a technique due to Frank and Tardos [Combinatorica 1987] that we refer to as losing-weight technique to obtain kernels of polynomial size for weighted problems. While the mentioned earlier works focus on problems with additive goal functions, we focus on a broader class of goal functions. We lift the losing-weight technique to what we call linearizable goal functions, which also contain non-additive functions. We apply the lifted technique to five exemplary problems, thereby improving two results from the literature by proving polynomial kernels.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset