Polymorphic Higher-order Termination
We generalise the termination method of higher-order polynomial interpretations to a setting with impredicative polymorphism. Instead of using weakly monotonic functionals, we interpret terms in a suitable extension of System F-omega. This enables a direct interpretation of rewrite rules which make essential use of impredicative polymorphism. In addition, our generalisation eases the applicability of the method in the non-polymorphic setting by allowing for the encoding of inductive data types. As an illustration of the potential of our method, we prove termination of a substantial fragment of full intuitionistic second-order propositional logic with permutative conversions.
READ FULL TEXT