Log In Sign Up

Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders

by   Rohit Batra, et al.

The design/discovery of new materials is highly non-trivial owing to the near-infinite possibilities of material candidates, and multiple required property/performance objectives. Thus, machine learning tools are now commonly employed to virtually screen material candidates with desired properties by learning a theoretical mapping from material-to-property space, referred to as the forward problem. However, this approach is inefficient, and severely constrained by the candidates that human imagination can conceive. Thus, in this work on polymers, we tackle the materials discovery challenge by solving the inverse problem: directly generating candidates that satisfy desired property/performance objectives. We utilize syntax-directed variational autoencoders (VAE) in tandem with Gaussian process regression (GPR) models to discover polymers expected to be robust under three extreme conditions: (1) high temperatures, (2) high electric field, and (3) high temperature and high electric field, useful for critical structural, electrical and energy storage applications. This approach to learn from (and augment) human ingenuity is general, and can be extended to discover polymers with other targeted properties and performance measures.


page 11

page 17


Inverse design of two-dimensional materials with invertible neural networks

The ability to readily design novel materials with chosen functional pro...

AI-driven Inverse Design System for Organic Molecules

Designing novel materials that possess desired properties is a central n...

Rapid Bayesian optimisation for synthesis of short polymer fiber materials

The discovery of processes for the synthesis of new materials involves m...

Inverse design of crystals using generalized invertible crystallographic representation

Deep learning has fostered many novel applications in materials informat...

Learning formation energy of inorganic compounds using matrix variate deep Gaussian process

Future advancement of engineering applications is dependent on design of...