Polyglot Neural Language Models: A Case Study in Cross-Lingual Phonetic Representation Learning

05/12/2016
by   Yulia Tsvetkov, et al.
0

We introduce polyglot language models, recurrent neural network models trained to predict symbol sequences in many different languages using shared representations of symbols and conditioning on typological information about the language to be predicted. We apply these to the problem of modeling phone sequences---a domain in which universal symbol inventories and cross-linguistically shared feature representations are a natural fit. Intrinsic evaluation on held-out perplexity, qualitative analysis of the learned representations, and extrinsic evaluation in two downstream applications that make use of phonetic features show (i) that polyglot models better generalize to held-out data than comparable monolingual models and (ii) that polyglot phonetic feature representations are of higher quality than those learned monolingually.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset