Polyadic Sets and Homomorphism Counting

10/21/2021
by   Luca Reggio, et al.
0

A classical result due to Lovasz (1967) shows that the isomorphism type of a graph is determined by homomorphism counts. That is, graphs G and H are isomorphic whenever the number of homomorphisms from K to G is the same as the number of homomorphisms from K to H for all graphs K. Variants of this result, for various classes of finite structures, have been exploited in a wide range of research fields, including graph theory and finite model theory. We provide a categorical approach to homomorphism counting based on the concept of polyadic (finite) set. The latter is a special case of the notion of polyadic space introduced by Joyal (1971) and related, via duality, to Boolean hyperdoctrines in categorical logic. We also obtain new homomorphism counting results applicable to a number of infinite structures, such as finitely branching trees and profinite algebras.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset