Policy Search: Any Local Optimum Enjoys a Global Performance Guarantee

06/06/2013 ∙ by Bruno Scherrer, et al. ∙ 0

Local Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a paramet erized policy space in order to maximize the associated value function averaged over some predefined distribution. It is probably commonly b elieved that the best one can hope in general from such an approach is to get a local optimum of this criterion. In this article, we show th e following surprising result: any (approximate) local optimum enjoys a global performance guarantee. We compare this g uarantee with the one that is satisfied by Direct Policy Iteration, an approximate dynamic programming algorithm that does some form of Poli cy Search: if the approximation error of Local Policy Search may generally be bigger (because local search requires to consider a space of s tochastic policies), we argue that the concentrability coefficient that appears in the performance bound is much nicer. Finally, we discuss several practical and theoretical consequences of our analysis.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.