Policy Optimization to Learn Adaptive Motion Primitives in Path Planning with Dynamic Obstacles

12/29/2022
by   Brian Angulo, et al.
0

This paper addresses the kinodynamic motion planning for non-holonomic robots in dynamic environments with both static and dynamic obstacles – a challenging problem that lacks a universal solution yet. One of the promising approaches to solve it is decomposing the problem into the smaller sub problems and combining the local solutions into the global one. The crux of any planning method for non-holonomic robots is the generation of motion primitives that generates solutions to local planning sub-problems. In this work we introduce a novel learnable steering function (policy), which takes into account kinodynamic constraints of the robot and both static and dynamic obstacles. This policy is efficiently trained via the policy optimization. Empirically, we show that our steering function generalizes well to unseen problems. We then plug in the trained policy into the sampling-based and lattice-based planners, and evaluate the resultant POLAMP algorithm (Policy Optimization that Learns Adaptive Motion Primitives) in a range of challenging setups that involve a car-like robot operating in the obstacle-rich parking-lot environments. We show that POLAMP is able to plan collision-free kinodynamic trajectories with success rates higher than 92 showing better performance than the state-of-the-art competitors.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
11/07/2020

Search-Based Online Trajectory Planning for Car-like Robots in Highly Dynamic Environments

This paper presents a search-based partial motion planner to generate dy...
research
08/15/2021

Augmenting GRIPS with Heuristic Sampling for Planning Feasible Trajectories of a Car-Like Robot

Kinodynamic motion planning for non-holomonic mobile robots is a challen...
research
11/06/2022

Depth-based Sampling and Steering Constraints for Memoryless Local Planners

By utilizing only depth information, the paper introduces a novel but ef...
research
10/21/2022

Motion Policy Networks

Collision-free motion generation in unknown environments is a core build...
research
03/08/2021

Co-Designing Robots by Differentiating Motion Solvers

We present a novel algorithm for the computational co-design of legged r...
research
07/10/2019

RL-RRT: Kinodynamic Motion Planning via Learning Reachability Estimators from RL Policies

This paper addresses two challenges facing sampling-based kinodynamic mo...
research
10/16/2022

Learning-based Motion Planning in Dynamic Environments Using GNNs and Temporal Encoding

Learning-based methods have shown promising performance for accelerating...

Please sign up or login with your details

Forgot password? Click here to reset