Policy Mirror Descent for Reinforcement Learning: Linear Convergence, New Sampling Complexity, and Generalized Problem Classes

01/30/2021
by   Guanghui Lan, et al.
0

We present new policy mirror descent (PMD) methods for solving reinforcement learning (RL) problems with either strongly convex or general convex regularizers. By exploring the structural properties of these overall seemly highly nonconvex problems we show that the PMD methods exhibit fast linear rate of convergence to the global optimality. We develop stochastic counterparts of these methods, and establish an O(1/ϵ) (resp., O(1/ϵ^2)) sampling complexity for solving these RL problems with strongly (resp., general) convex regularizers using different sampling schemes, where ϵ denote the target accuracy. We further show that the complexity for computing the gradients of these regularizers, if necessary, can be bounded by O{(log_γϵ) [(1-γ)L/μ]^1/2log (1/ϵ)} (resp., O{(log_γϵ ) (L/ϵ)^1/2})for problems with strongly (resp., general) convex regularizers. Here γ denotes the discounting factor. To the best of our knowledge, these complexity bounds, along with our algorithmic developments, appear to be new in both optimization and RL literature. The introduction of these convex regularizers also greatly expands the flexibility and applicability of RL models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset