Policy Evaluation with Latent Confounders via Optimal Balance

08/06/2019 ∙ by Andrew Bennett, et al. ∙ 0

Evaluating novel contextual bandit policies using logged data is crucial in applications where exploration is costly, such as medicine. But it usually relies on the assumption of no unobserved confounders, which is bound to fail in practice. We study the question of policy evaluation when we instead have proxies for the latent confounders and develop an importance weighting method that avoids fitting a latent outcome regression model. We show that unlike the unconfounded case no single set of weights can give unbiased evaluation for all outcome models, yet we propose a new algorithm that can still provably guarantee consistency by instead minimizing an adversarial balance objective. We further develop tractable algorithms for optimizing this objective and demonstrate empirically the power of our method when confounders are latent.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.