Polar Codes' Simplicity, Random Codes' Durability

12/19/2019
by   Hsin-Po Wang, et al.
0

Over any discrete memoryless channel, we build codes such that: for one, their block error probabilities and code rates scale like random codes'; and for two, their encoding and decoding complexities scale like polar codes'. Quantitatively, for any constants π,ρ>0 such that π+2ρ<1, we construct a sequence of error correction codes with block length N approaching infinity, block error probability (-N^π), code rate N^-ρ less than the Shannon capacity, and encoding and decoding complexity O(Nlog N) per code block. The putative codes take uniform ς-ary messages for sender's choice of prime ς. The putative codes are optimal in the following manner: Should π+2ρ>1, no such codes exist for generic channels regardless of alphabet and complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro