PoisonedGNN: Backdoor Attack on Graph Neural Networks-based Hardware Security Systems

03/24/2023
by   Lilas Alrahis, et al.
0

Graph neural networks (GNNs) have shown great success in detecting intellectual property (IP) piracy and hardware Trojans (HTs). However, the machine learning community has demonstrated that GNNs are susceptible to data poisoning attacks, which result in GNNs performing abnormally on graphs with pre-defined backdoor triggers (realized using crafted subgraphs). Thus, it is imperative to ensure that the adoption of GNNs should not introduce security vulnerabilities in critical security frameworks. Existing backdoor attacks on GNNs generate random subgraphs with specific sizes/densities to act as backdoor triggers. However, for Boolean circuits, backdoor triggers cannot be randomized since the added structures should not affect the functionality of a design. We explore this threat and develop PoisonedGNN as the first backdoor attack on GNNs in the context of hardware design. We design and inject backdoor triggers into the register-transfer- or the gate-level representation of a given design without affecting the functionality to evade some GNN-based detection procedures. To demonstrate the effectiveness of PoisonedGNN, we consider two case studies: (i) Hiding HTs and (ii) IP piracy. Our experiments on TrustHub datasets demonstrate that PoisonedGNN can hide HTs and IP piracy from advanced GNN-based detection platforms with an attack success rate of up to 100

READ FULL TEXT

page 9

page 13

research
03/29/2023

Graph Neural Networks for Hardware Vulnerability Analysis – Can you Trust your GNN?

The participation of third-party entities in the globalized semiconducto...
research
07/19/2021

GNN4IP: Graph Neural Network for Hardware Intellectual Property Piracy Detection

Aggressive time-to-market constraints and enormous hardware design and f...
research
08/17/2022

Embracing Graph Neural Networks for Hardware Security (Invited Paper)

Graph neural networks (GNNs) have attracted increasing attention due to ...
research
06/21/2020

Graph Backdoor

One intriguing property of deep neural network (DNN) models is their inh...
research
04/05/2023

Rethinking the Trigger-injecting Position in Graph Backdoor Attack

Backdoor attacks have been demonstrated as a security threat for machine...
research
01/27/2023

TrojanSAINT: Gate-Level Netlist Sampling-Based Inductive Learning for Hardware Trojan Detection

We propose TrojanSAINT, a graph neural network (GNN)-based hardware Troj...
research
08/23/2022

AppGNN: Approximation-Aware Functional Reverse Engineering using Graph Neural Networks

The globalization of the Integrated Circuit (IC) market is attracting an...

Please sign up or login with your details

Forgot password? Click here to reset