Point Cloud Distortion Quantification based on Potential Energy for Human and Machine Perception

03/04/2021
by   Qi Yang, et al.
10

Distortion quantification of point clouds plays a stealth, yet vital role in a wide range of human and machine perception tasks. For human perception tasks, a distortion quantification can substitute subjective experiments to guide 3D visualization; while for machine perception tasks, a distortion quantification can work as a loss function to guide the training of deep neural networks for unsupervised learning tasks. To handle a variety of demands in many applications, a distortion quantification needs to be distortion discriminable, differentiable, and have a low computational complexity. Currently, however, there is a lack of a general distortion quantification that can satisfy all three conditions. To fill this gap, this work proposes multiscale potential energy discrepancy (MPED), a distortion quantification to measure point cloud geometry and color difference. By evaluating at various neighborhood sizes, the proposed MPED achieves global-local tradeoffs, capturing distortion in a multiscale fashion. Extensive experimental studies validate MPED's superiority for both human and machine perception tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset