Pneumothorax Segmentation: Deep Learning Image Segmentation to predict Pneumothorax

12/16/2019
by   Karan Jakhar, et al.
0

Computer vision has shown promising results in medical image processing. Pneumothorax is a deadly condition and if not diagnosed and treated at time then it causes death. It can be diagnosed with chest X-ray images. We need an expert and experienced radiologist to predict whether a person is suffering from pneumothorax or not by looking at the chest X-ray images. Everyone does not have access to such a facility. Moreover, in some cases, we need quick diagnoses. So we propose an image segmentation model to predict and give the output a mask that will assist the doctor in taking this crucial decision. Deep Learning has proved their worth in many areas and outperformed man state-of-the-art models. We want to use the power of these deep learning model to solve this problem. We have used U-net [13] architecture with ResNet [17] as a backbone and achieved promising results. U-net [13] performs very well in medical image processing and semantic segmentation. Our problem falls in the semantic segmentation category.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset