PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking

04/30/2020 ∙ by Hannah Rashkin, et al. ∙ 0

We propose the task of outline-conditioned story generation: given an outline as a set of phrases that describe key characters and events to appear in a story, the task is to generate a coherent narrative that is consistent with the provided outline. This task is challenging as the input only provides a rough sketch of the plot, and thus, models need to generate a story by weaving through the key points provided in the outline. This requires the model to keep track of the dynamic states of the latent plot, conditioning on the input outline while generating the full story. We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states. In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different styles of writing corresponding to different parts of the narrative. Comprehensive experiments over three fiction and non-fiction datasets demonstrate that recently introduced large-scale language models, such as GPT-2 and Grover, despite their impressive generation performance, are not sufficient in generating coherent narratives for the given outline, and dynamic plot state tracking is important for composing narratives with tighter, more consistent plots.



There are no comments yet.


page 18

page 20

page 21

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.