Playing Catan with Cross-dimensional Neural Network

08/17/2020 ∙ by Quentin Gendre, et al. ∙ 0

Catan is a strategic board game having interesting properties, including multi-player, imperfect information, stochastic, complex state space structure (hexagonal board where each vertex, edge and face has its own features, cards for each player, etc), and a large action space (including negotiation). Therefore, it is challenging to build AI agents by Reinforcement Learning (RL for short), without domain knowledge nor heuristics. In this paper, we introduce cross-dimensional neural networks to handle a mixture of information sources and a wide variety of outputs, and empirically demonstrate that the network dramatically improves RL in Catan. We also show that, for the first time, a RL agent can outperform jsettler, the best heuristic agent available.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.