Plausible reasoning from spatial observations

01/10/2013 ∙ by Jerome Lang, et al. ∙ 0

This article deals with plausible reasoning from incomplete knowledge about large-scale spatial properties. The availableinformation, consisting of a set of pointwise observations,is extrapolated to neighbour points. We make use of belief functions to represent the influence of the knowledge at a given point to another point; the quantitative strength of this influence decreases when the distance between both points increases. These influences arethen aggregated using a variant of Dempster's rule of combination which takes into account the relative dependence between observations.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

page 7

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.