Planning with RL and episodic-memory behavioral priors
The practical application of learning agents requires sample efficient and interpretable algorithms. Learning from behavioral priors is a promising way to bootstrap agents with a better-than-random exploration policy or a safe-guard against the pitfalls of early learning. Existing solutions for imitation learning require a large number of expert demonstrations and rely on hard-to-interpret learning methods like Deep Q-learning. In this work we present a planning-based approach that can use these behavioral priors for effective exploration and learning in a reinforcement learning environment, and we demonstrate that curated exploration policies in the form of behavioral priors can help an agent learn faster.
READ FULL TEXT