Plan, Attend, Generate: Character-level Neural Machine Translation with Planning in the Decoder

06/13/2017
by   Caglar Gulcehre, et al.
0

We investigate the integration of a planning mechanism into an encoder-decoder architecture with an explicit alignment for character-level machine translation. We develop a model that plans ahead when it computes alignments between the source and target sequences, constructing a matrix of proposed future alignments and a commitment vector that governs whether to follow or recompute the plan. This mechanism is inspired by the strategic attentive reader and writer (STRAW) model. Our proposed model is end-to-end trainable with fully differentiable operations. We show that it outperforms a strong baseline on three character-level decoder neural machine translation on WMT'15 corpus. Our analysis demonstrates that our model can compute qualitatively intuitive alignments and achieves superior performance with fewer parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset