Pixel Representations for Multilingual Translation and Data-efficient Cross-lingual Transfer
We introduce and demonstrate how to effectively train multilingual machine translation models with pixel representations. We experiment with two different data settings with a variety of language and script coverage, and show performance competitive with subword embeddings. We analyze various properties of pixel representations to better understand where they provide potential benefits and the impact of different scripts and data representations. We observe that these properties not only enable seamless cross-lingual transfer to unseen scripts, but make pixel representations more data-efficient than alternatives such as vocabulary expansion. We hope this work contributes to more extensible multilingual models for all languages and scripts.
READ FULL TEXT