PILED: An Identify-and-Localize Framework for Few-Shot Event Detection

02/15/2022
by   Sha Li, et al.
0

Practical applications of event extraction systems have long been hindered by their need for heavy human annotation. In order to scale up to new domains and event types, models must learn to cope with limited supervision, as in few-shot learning settings. To this end, the major challenge is to let the model master the semantics of event types, without requiring abundant event mention annotations. In our study, we employ cloze prompts to elicit event-related knowledge from pretrained language models and further use event definitions and keywords to pinpoint the trigger word. By formulating the event detection task as an identify-then-localize procedure, we minimize the number of type-specific parameters, enabling our model to quickly adapt to event detection tasks for new types. Experiments on three event detection benchmark datasets (ACE, FewEvent, MAVEN) show that our proposed method performs favorably under fully supervised settings and surpasses existing few-shot methods by 21 FewEvent dataset and 20 for each event type.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset