Physics-Informed Localized Learning for Advection-Diffusion-Reaction Systems

05/05/2023
by   Surya T. Sathujoda, et al.
0

The global push for new energy solutions, such as Geothermal, and Carbon Capture and Sequestration initiatives has thrust new demands upon the current state-of the-art subsurface fluid simulators. The requirement to be able to simulate a large order of reservoir states simultaneously in a short period of time has opened the door of opportunity for the application of machine learning techniques for surrogate modelling. We propose a novel physics-informed and boundary conditions-aware Localized Learning method which extends the Embed-to-Control (E2C) and Embed-to-Control and Observed (E2CO) models to learn local representations of global state variables in an Advection-Diffusion Reaction system. We show that our model trained on reservoir simulation data is able to predict future states of the system, given a set of controls, to a great deal of accuracy with only a fraction of the available information, while also reducing training times significantly compared to the original E2C and E2CO models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro