Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis

10/04/2020
by   oameed, et al.
0

In this paper, we propose a deep neural network based model to predict the time evolution of field values in transient electrodynamics. The key component of our model is a recurrent neural network, which learns representations of long-term spatial-temporal dependencies in the sequence of its input data. We develop an encoder-recurrent-decoder architecture, which is trained with finite difference time domain simulations of plane wave scattering from distributed, perfect electric conducting objects. We demonstrate that, the trained network can emulate a transient electrodynamics problem with more than 17 times speed-up in simulation time compared to traditional finite difference time domain solvers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro