Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis

10/04/2020
by   oameed, et al.
0

In this paper, we propose a deep neural network based model to predict the time evolution of field values in transient electrodynamics. The key component of our model is a recurrent neural network, which learns representations of long-term spatial-temporal dependencies in the sequence of its input data. We develop an encoder-recurrent-decoder architecture, which is trained with finite difference time domain simulations of plane wave scattering from distributed, perfect electric conducting objects. We demonstrate that, the trained network can emulate a transient electrodynamics problem with more than 17 times speed-up in simulation time compared to traditional finite difference time domain solvers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset